Monday 24 April 2017

Quantum Computation

Tugas 4 Pengantar Komputasi Modern



1. Pengertian Komputasi Kuantum

Pengertian sederhana dari computer kuantum adalah jenis chip processor terbaru yang diciptakan berdasar perkembangan mutakhir dari ilmu fisika (dan matematika) quantum. Singkatnya, chip konvensional sekarang ini perlu diganti dengan yang lebih baik.

Komputer kuantum adalah alat hitung yang menggunakan sebuah fenomena mekanika kuantum, misalnya superposisi dan keterkaitan, untuk melakukan operasi data. Dalam komputasi klasik, jumlah data dihitung dengan bit; dalam komputer kuantum, hal ini dilakukan dengan qubit. Prinsip dasar komputer kuantum adalah bahwa sifat kuantum dari partikel dapat digunakan untuk mewakili data dan struktur data, dan bahwa mekanika kuantum dapat digunakan untuk melakukan operasi dengan data ini. Dalam hal ini untuk mengembangkan komputer dengan sistem kuantum diperlukan suatu logika baru yang sesuai dengan prinsip kuantum.

2. Sejarah

Ide mengenai komputer kuantum pertama kali muncul pada tahun 1970-an oleh para fisikawan dan ilmuwan komputer, seperti Charles H. Bennett dari IBM, Paul A. Benioff dari Argonne National Laboratory, Illinois, David Deutsch dari University of Oxford, dan Richard P. Feynman dari California Institute of Technology (Caltech).

Di antara para ilmuwan tersebut, Feynmanlah yang pertama kali mengajukan model yang menunjukkan bahwa sebuah sistem kuantum dapat digunakan untuk melakukan komputasi. Lebih jauh, Feynman juga menunjukkan bagaimana sistem tersebut dapat menjadi simulator bagi fisika kuantum. Dengan kata lain, fisikawan dapat melakukan eksperimen fisika kuantum melalui komputer kuantum.

Pada tahun 1985, Deutsch menyadari esensi dari komputasi oleh sebuah komputer kuantum dan menunjukkan bahwa semua proses fisika, secara prinsipil, dapat dimodelkan melalui komputer kuantum. Dengan demikian, komputer kuantum memiliki kemampuan yang melebihi komputer klasik.

Setelah Deutsch mengeluarkan tulisannya mengenai komputer kuantum, para ilmuwan mulai melakukan riset di bidang ini. Mereka mulai mencari kemungkinan penggunaan dari sebuah komputer kuantum. Pada tahun 1995, Peter Shor merumuskan sebuah algoritma yang memungkinkan penggunaan komputer kuantum untuk memecahkan masalah faktorisasi dalam teori bilangan.

Saat ini pihak google sudah melakukan percobaan dan pembuatan tentang computer kuantum ini. Google meneraplan Algoritma yang sama telah diterapkan pada produk lab Google yakni Google Image Swirl dimana secara cerdas komputer bisa menentukan dan mengelompokkan mana gambar mobil Jaguar dengan mana gambar binatang Jaguar. Atau misalnya mana kelompok gambar buah Apel dengan kelompok gambar komputer apple. Ini adalah salah satu contoh pengembangan computer kuantum yang dibuat google.


3. Perbedaan Komputer Kuantum dengan Komputer Klasik

  • Memori komputer klasik merupakan string dari 0s dan 1s, dan ia mampu melakukan perhitungan hanya pada sekumpulan bilangan secara simultan. Memori komputer kuantum merupakan sebuah keadaan kuantum yang mrupakan superposisi dari bilangan-bilangan yang berbeda.
  • Sepanjang sejarah komputasi, bit tetap merupakan unit komputasi dasar informasi. Mekanika kuantum memungkinkan pengkodean informasi dalam bit kuantum (qubit). Tidak seperti bit klasik, yang hanya bisa menyimpan nilai tunggal - baik 0 atau 1 - qubit dapat menyimpan baik 0 dan 1 pada saat yang sama.
  • Selanjutnya, register kuantum 64 qubit dapat menyimpan nilai 264 sekaligus. Komputer Kuantum dapat melakukan perhitungan pada semua nilai-nilai ini pada saat yang sama. Namun, penggalian hasil dari perhitungan paralel masif telah terbukti sulit, membatasi jumlah aplikasi yang telah menunjukkan peningkatan kecepatan yang signifikan dibandingkan komputasi klasik.

4. Penjelasan Tentang Qubits

Dalam sebuah percobaan yang terkenal, cahaya dari satu sumber melewati dua celah, menciptakan sebuah pola interferensi pada layar. Bahkan ketika sumber cahaya hanya memancarkan satu foton pada suatu waktu, pola interferensi muncul. Standar teori kuantum mendalilkan bahwa setiap foton bergerak pada kedua jalur (path) sekaligus. Dengan demikian, partikel dapat berada di dua tempat pada saat yang sama. Dalam situasi tersebut, kita mengatakan bahwa posisi partikel berada dalam superposisi dari dua keadaan.

Dua jalur perjalanan partikel dapat mewakili dua keadaan dari sebuah bit, 0 dan 1. Dalam mekanika kuantum, apabila sistem memiliki dua atau lebih peluang yang memungkinkan, ia dapat menjelajahi mereka secara bersamaan. Setiap sistem dua keadaan, seperti jalur foton, dapat mewakili qubit. Dalam komputer kuantum, kita malah mungkin menggunakan dua orbit elektron dalam atom untuk mewakili qubit. Atom bisa eksis dalam superposisi dari 0 dan 1, mirip seperti lonceng yang dipukul dapat bergetar pada dua frekuensi yang berbeda secara bersamaan.

Referensi :

0 comments:

Post a Comment